
TP de JAVA - Série 8
Design de classes

Université de Mons-Hainaut
2004 - 2005

1 Résumé du chapitre

• Une classe ne devrait représenter qu’un unique concept du domaine auquel appartient le problème, tel
que la finance, la science ou les mathématiques.

• L’interface publique d’une classe est cohérente si tous ses éléments sont liés au concept que cette classe
représente.

• Une classe dépend d’une autre classe qui elle utilise des objets de cette autre classe.

• Il est de bonne pratique de minimiser le couplage (c’est-à-dire les dépendances) entre les classes.

• Un "accessor" ne modifie pas l’état du paramètre implicite. Un "mutator" peut change cet état.

• Une classe immuable n’a pas de "mutator".

• L’effet de bords d’une méthode est un comportement observable de l’extérieur, hormis le paramètre
implicite.

• En Java, une méthode ne peut jamais modifier les paramètres de type primitif.

• En Java, une méthode ne peut modifier l’état de paramètres référence objet, mais elle ne peut pas rem-
placer cette référence objet par une autre.

• Une pré-condition est un pré-requis que l’appelant d’une méthode doit respecter. Si une méthode est
appelée en violation d’une pré-condition, la méthode n’a plus la responsabilité de fournir le résultat
correct.

• Si une méthode est appelée en respectant ses pré-conditions, alors elle doit assurer que les post-conditions
sont valides.

• Une méthodestatic n’a pas de paramètre implicite.

• Un champ (attribut)static fait partie de la classe, pas de chacun des objets de cette classe (il est
partagé).

• La portée d’une variable est la région du programme dans laquelle vous pouvez utiliser cette variable
par son nom.

• En Java, vous ne pouvez pas avoir deux variables locales ayant des portées qui se chevauchent.

• Un nom qualifié est préfixé par le nom de sa classe ou par une référence objet, tels que Math.sqrt ou
other.balance.

1

• Un champ d’instance ou un nom de méthode non qualifiée se référe au paramètre implicitethis .

• Une variable locale peut "cacher" un champ portant le même nom. On peut accèder au nom du champ
"caché" en le qualifiant avec la référencethis .

• Un paquetage est un ensemble de classes reliées.

• La directiveimport vous permet d’utiliser une classe de ce paquetage sans le prefix du paquetage.

• Utilisez un nom de domaine en plus quand vous souhaitez construire des noms de paquetages non am-
bigus.

• Le chemin d’une fichierclass doit coincider avec son nom de paquetage.

Les packages, classes et méthodes introduites dans ce chapitre:

java.lang.IllegalArgumentException

2 Exs. de révision

R8.1: Condidérer la description suivante de programme:
Des clients insèrent des pièces dans un distributeur et sélectionnent un produit en poussant un bouton. Si les
pièces insérées sont suffisantes pour couvrir le prix d’achat du produit, le produit est délivré et la monnaie
donnée. Dans le cas contraire, les pièces insérées sont rendu au client.

Quelles classes utiliseriez-vous pour l’implémenter?

R8.2: Condidérer la description suivante de programme:
Des employés sont payés toutes les deux semaines. Ils recoivent leur salaire horaire pour chaque heure tra-
vaillée. Cependant, s’ils ont travaillé plus de 40 heures par semaine, les heures au-delà sont payées au taux de
150% leur salaire normal.

Quelles classes utiliseriez-vous pour l’implémenter?

R8.3: Considérer la description suivante de programme:
Des consommateurs commandent des produits dans un magasin. Des factures sont établies pour effectuer la
liste des produits, les quantités commandées, les paiements reçus et les sommes encore dues. Les produits sont
livrés à l’adresse de livraison du client, et les factures sont envoyées à l’adresse de facturation.

Quelles classes utiliseriez-vous pour l’implémenter?

R8.4: Regarder l’interface publique de la classeSystem et discuter de savoir si elle est cohérente ou non.

R8.5 : Supposons qu’un objetFacture contienne les descriptions des produits commandés, ainsi que les
adresses de livraison et de facturation du client. Dessiner les graphes de dépendances entre les classes
Facture , Adresse , Client etProduit .

R8.6: Supposons qu’un distributeur contienne des produits et qu’un client insère des pièces dans le distributeur
pour acheter des produits. Dessiner les graphes de dépendances entre les classesDistributeur , Pièce et
Produit .

R8.7: De quelles classes dépend la classeInteger dans la librairie standard.

R8.8: De quelles classes dépend la classeRectangle dans la librairie standard.

R8.9: Classer les méthodes de la classeStringTokenizer en accessors et mutators.

R8.10: Classer les méthodes de la classeRectangle en accessors et mutators.

R8.11: Lesquelles de ces classes sont immuables?

2

• Rectangle

• String

• Random

R8.12: Lesquelles de ces classes sont immuables?

• PrintStream

• Date

• Integer

R8.13: Si elles en ont décrire les effets de bords des 3 méthodes suivantes.

public class Coin
{

public void print()
{

System.out.println(name+" "+value);
}
public void print(PrintStream stream)
{

stream.println(name+" "+value);
}
public String toString()
{

return name+" "+value;
}
...

}

R8.14: Idéalement, une méthode ne devrait pas avoir d’effet de bord. Pouvez-vous écrire un programme dans
lequel aucune méthode n’a d’effet de bord? Un tel programme serait-il utile?

R8.15: Ecrire les pré-conditions des méthodes suivantes. Ne pas implémenter les méthodes.

• public static double sqrt(double x)

• public static String romanNumeral(int n)

• public static double slope(Line2D.Double a)

• public static String weekDay(int day)

R8.16: Quelles pré-conditions possèdent les méthodes suivantes dans la librairie standard.

• Math.sqrt

• Math.tan

• Math.log

3

• Math.exp

• Math.pow

• Math.abs

R8.17: Quelles pré-conditions possèdent les méthodes suivantes dans la librairie standard.

• Integer.parseInt(String s)

• StringTokenizer.nextToken()

• Random.nextInt(int n)

• String.substring(int m, int n)

R8.18: Quand une méthode est appelée avec des paramètres qui ne respectent pas sa précondition, elle peut
lancer une exception, ou retourner à son appelant. Donner deux exemples de méthodes de librairie (librairie
standard ou librairie utilisée dans le cours et les travaux pratiques) qui retournent des résultats à l’appelant
dans le cas d’un appel avec paramètres invalides, et deux exemples lancant une exception.

R8.19: Considérer une classePurse avec les méthodes suivantes:

• public void addCoin(Coin aCoin)

• public double getTotal()

Donner une postcondition raisonnable pour la méthodeaddCoin . De quelle précondition avez-vous besoin
pour que la classePurse puisse assurer cette postcondition?

R8.20: Considérer la méthode suivante dont le but est d’échanger les valeurs de deux nombres à virgule flot-
tante:
public static void falseSwap(double a,double b)
{

double temp=a;
a=b;
b=temp;

}
public static void main(String args[])
{

double x=3;
double y=4;
falseSwap(x, y);
System.out.println(x+" "+y);

}

Pourquoi la méthodefalseSwap n’échange pas les contenus de x et y?
R8.21: Comment pourriez-vous écrire une méthode qui échange deux nombres à virgule flottantes?
Indication:Point2D.Double

R8.22: Essayer de compiler le programme suivant:

4

public class Ex7_22
{

public void print(int x)
{

System.out.println(x);
}
public static void main(String arg[])
{

int n=13;
print(n);

}
}

R8.23: Regarder les méthodes de la classeInteger . Lesquelles sont static? Pourquoi?

R8.24 : Regarder les méthodes de la classeString (ignorer celles qui prennent des paramètres de type
char[]). Lesquelles sont static? Pourquoi?
R8.25: Dans la classe suivante, la variablen apparait avec plusieurs portées. Quelles déclarations sont légales
et lesquelles ne le sont pas?
public class x
{

public int f()
{

int n=1;
return n;

}
public int g(int k)
{

int a;
for(int n=1; n<=k;n++)

a=a+n;
return a;

}

public int h(int n)
{

int b;
for(int n=1; n<=10;n++)

b=b+n;
return b+n;

}
public int k(nit n)
{

if(n<0)
{

int k=-n;
int n=(int)(Math.sqrt(n));
return n;

}
else return n;

5

}

public int m(int k)
{

int a;
for(int n=1; n<=k;n++)

a=a+n;
for(int n=k; n>=1;n++)

a=a+n;
return a;

}
private int n;

}

R8.26: Qu’est-ce qu’un nom qualifié? Qu’est-ce qu’un nom non qualifié?

R8.27: Quand vous accèdez à un nom qualifié dans une méthode, qu’est-ce que cet accès signifie? Discuter
entre instance et éléments static.

R8.28: Qu’est-ce que le paquetage par défaut? L’avez-vous utilisé dans vos programmes avant ce chapitre?

3 Exs. programmation

P8.1: Implémenter les classesPurse etCoin décrites dans la section 7.2 du livre.

P8.2: Modifier la classeBankAccount en ajoutant des pré-conditions pour le constructeur et la méthode
deposit qui nécessite un paramètreamount qui doit être supérieur à 0, et une pré-condition pour la méthode
withdraw qui nécessite unamount inférieur à la valeur courrante debalance . Lancer des exceptions si
la pré-condition n’est pas remplie.

P8.3: Ecrire les méthodes static:

• public static double sphereVolume(double r)

• public static double sphereSurface(double r)

• public static double cylindreVolume(double r, double h)

• public static double cylindreSurface(double r, double h)

• public static double coneVolume(double r, double h)

• public static double coneSurface(double r, double h)

qui calcule le volume et la surface d’une sphère de rayonr , d’un cylindre de base de rayonr et de hauteurh,
et d’un cône de base circulaire d erayonr et de hauteurh. Placer ces méthodes dans une classe appropriée.
Ecrire un programme qui demande à l’utilisateur d’entrer les valeurs der et deh, qui appelle ces 6 méthodes
et affiche les résultats.

P8.4: Résoudre l’exercice P8.3 en implémentant des classesSphere , Cylindre et Cone. Laquelle des
deux approches est le plus orienté objet.

P8.5: Ecrire une méthode
public static double distance(Point2D.Double p, Point2D.Double q)

6

qui calcule la distance entre deux points. Ajouter la méthode à une classe appropriée. Écrire un programme de
test qui demande à l’utilisateur d’entrer les deux points. Afficher la distance. Pourquoi cela à un sens d’utiliser
une méthode static dans ce cas.
P8.6: Ecrire une méthode
public static boolean isInside(Point2D.Double p, Ellipse2D.Double e)
qui teste qui un point est à l’intérieur d’une ellipse. Ajouter la méthode à une classe appropriée. Écrire un
programme de test qui demande à l’utilisateur d’entrer un point et une ellipse et qui affiche si le point est à
l’intérieur de l’ellipse ou non..

P8.7: Ecrire une méthode
public static int readInt(String prompt, int min, int max)
qui affiche le paramètreprompt comme message d’invitation, lit un entier et teste si celui-ci est compris
entre le minimum et le maximum. Si ce n’est pas le cas, afficher un message d’erreur et relire l’entrée. Si
l’utilisateur annule la fenêtre de saisie, afficher un message d’erreur et continuer à lire. Ajouter la méthode à
une classe appropriée et fournir un programme de test.
P8.8: Codes barre postaux
Pour trier les lettres plus vite, les services postaux encouragent les sociétés envoyant de grande quantité de
courrier, à utiliser un code barre représentant le ZIP code (voir Figure 1). Le schéma de codage pour un ZIP
code à 5 chiffres est présenté à la Figure 2. Il y a des barres complètes de chaque côté. Les 5 chiffres codés
sont suivis par un chiffre de correction, qui est calculé comme suit. Additionner tous les chiffres et placer le
chiffre de correction de manière à ce que cette somme atteigne un multiple de 10.
Exemple: pour le ZIP code 95014, la somme des chiffres est 19, le chiffre de correction est alors 1, pour
atteindre 20.

Figure 1

****************** ECRLOT ** CO57

CODE C67RTS2
JOHN DOE CO57
1009 FRANKLIN BLVD
SUNNYVALE CA 95014-5143

|| | | | || || | | |||
||||||||||||||||||||||||||||||||

Figure 2

|| | | | || || | | |||
|||||| ||||| ||||| ||||| ||||| ||||||
Digit1 Digit2 Digit3 Digit4 Digit5 Check

Digit

Chaque chiffre d’un ZIP code, et le chiffre de correction sont codés selon le modèle suivant:
Ou 0 représente une demi-barre et 1 une barre complète. Noter que ceci représente toutes les combinaisons de
2 barres complètes et 3 demis barres. Le chiffre peut facilement être calculé depuis le code barre en utilisant
les poids de colonnes 7, 4, 2, 1, 0.

Par exemple, 01100 est 0*7 + 1*4 + 1*2 + 0*1 + 0*0 = 6. La seule exception est 0 qui devrait donner 11 selon
la formule.

7

7 4 2 1 0
1 0 0 0 1 1
2 0 0 1 0 1
3 0 0 1 1 0
4 0 1 0 0 1
5 0 1 0 1 0
6 0 1 1 0 0
7 1 0 0 0 1
8 1 0 0 1 0
9 1 0 1 0 0
0 1 1 0 0 0

Ecrire un programme qui demande à l’utilisateur un ZIP code et affiche le code barre. Utiliser ’:’ pour les

demi-barre et ’|’ pour les barres pleines.

Par exemple, 95014 devient ||:|:::|:|:||::::::||:|::|:::|||

Utiliser des classesBarCode etDigit dans votre solution.
P8.9: Ecrire un programme qui lit un code barre (avec des ’:’ pour les demi barres et des ’|’ pour les barres
complètes), et afficher le ZIP code représenté. Afficher un message d’erreur si le code barre n’est pas complet.

P8.10: Considérer l’algorithme suivant pour calculerxn pour un entier :n.
Si n < 0, xn est1/x−n.
Si n est positif et pair,xn = (xn/2)2 .
Si n est positif et impair,xn = xn−1.x .
Implémenter une méthode staticintPower(double x, int n) qui utilise cet algorithme. Ajouter cette
méthode à la classeNumeric .
P8.11: Considérer la classeDie du Chapitre 6 (page 263). Tranformer le champgenerator en champ
static de façon à ce que toutes les instances partagent un générateur de nombre aléatoire.

P8.12: Cet exercice suppose que vous ayez une adresse e-mail. Ecrire des classesGreeter etGreeterTest
dans un paquetage dont le nom est dérivé de votre adresse e-mail, tel que décrit Section 7.9 du livre (page 310).

P8.13: Implémenter les classesPurse et Coin décrites dans la section 7.2 du livre (page 283). Placer ces
classes dans un paquetage nomméMoney. Ecrire une classeMoneyTest dans le paquetage par défaut.

8

