UMH

Notions théoriques TP de \]AVA - @I’Ie 9
— Tester et @bugger

Programmation

Universie de Mons-Hainaut
2004 - 2005

Remarque : Il est en gréral conseil d'utiliser les termedébogueydébogage
déebogueuretbogue Cependant, dans la pratique et dans la langue orale nous cor
statons que ceux-ci sont peu u@lss C’est pourquoi nous utiliserons les termes
débugger débugagedébugueuret bug

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

1. Notions théoriques

UMH

1.1. Meéthode de Heron

Six est une estimation dg/a, alors la moyenne de et ¢ est une
Révision meilleur estimation dg/a.

Programmation

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

1. Notions théoriques

UMH

1.1. Meéthode de Heron

Six est une estimation dg/a, alors la moyenne de et ¢ est une
Révision meilleur estimation dg/a.
Programmation

public class RootApproximator
{
private double a;
private double xold;
private double xnew;

/**
Creates a RootApproximator object
@param aNum is the input value
(Precondition: aNumber >= 0)

*

public RootApproximator(double aNum)

{

a = aNum;
xold = 1;
Xnew = a;

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

UMH &
Compute a better guess from the current guess.

@return the next guess
*/

public double nextGuess()
Révision {

: xold = xnew;
Programmation if(xold != 0)

xnew = (xold + (a / xold)) / 2;
return xnew;

}
/**

Compute the root

@return the computed value for the square root
*/

public double getRoot()

while (INumeric.approxEqual(xnew, xold))
nextGuess();
return xnew;

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

UMH

Notions théoriques
Révision
Programmation

1.2. Tests unite

Tester les classes, lesthodes individuellement avant de les
incorporer dans un programme.

e Un test unié serta tester une @thode ou un ensemble de&thodes
cooferatives.

e Pour un test und, les classes contenant leg¢thodesa tester sont
compilees hors du programme principal, avec une simpi¢hode
(dans une classe de test) agstest harnesgjui va faire appel et
passer des paratres aux rathodes tester.

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

UMH

Notions théoriques
Révision
Programmation

Exemple 1 :

import javax.swing.JOptionPane;

public class RootApproximatorTest

{

/**

Test harness for method nextGuess
*/

public static void main(String[] args)

{

String input

= JOptionPane.showlnputDialog("Enter a number");
double a = Double.parseDouble(input);
RootApproximator r = new RootApproximator(a);

for (int tries = 1; tries <= 10; tries++)
System.out.printin("Guess #"
+ tries + " " + r.nextGuess());

System.exit(0);

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

UMH

Révision

Programmation

Exemple 2 :

/**

Test harness for method getRoot
*/
public static void main(String[] args)

boolean done = false;
while (!done)
{
String input = JOptionPane.showlnputDialog(
"Enter a number, cancel to quit");
if (input == null)
done = true;
else

double a = Double.parseDouble(input);
RootApproximator r = new RootApproximator(a);

System.out.printin("Square root of "
+ x + " =" + r.getRoot());
}

}
System.exit(0);

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

1.3. Generer des entrees pour les tests

UMH

Révision

Probleme: les tests gcdédents sont lents car les d&@as doivent
étre rentéesa la main.

Programmation

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

1.3. Generer des entrees pour les tests

Ul \ ll l Probleme: les tests gFcedents sont lents car les d@es doivent
étre renteesa la main.
Révision Solutions: lire les doneesa la console, dans un fichier oemgrer

Programmation des donges akatoirement.

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

1.3. Generer des entrees pour les tests

Ul \ " l Probleme: les tests gFcedents sont lents car les d@es doivent
étre rentéesa la main.
Révision Solutions: lire les doneesa la console, dans un fichier oemgrer
Programmation des donges akatoirement.

Trois sortes de valeugstestertest de cak:

e tests positifs valeurs &gitimes qui servena verifier si les
résultats sont ceux attendus (e.g. pgar. 100, 1,0.01, 102,

)

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

1.3. Generer des entrees pour les tests

Ul \ ll l Probleme: les tests gFcedents sont lents car les d@es doivent
étre rentéesa la main.
Révision Solutions: lire les doneesa la console, dans un fichier oemgrer
Programmation des donges akatoirement.

Trois sortes de valeugstestertest de cak:

e tests positifs valeurs &gitimes qui servena verifier si les
résultats sont ceux attendus (e.g. pgar. 100, 1,0.01, 102,

)

e tests de bornesvaleurs (Bgitimes) qui se trouverit la limite
des donies acceptables (e @pour \/')

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

1.3. Generer des entrees pour les tests

UMH

Probleme: les tests gcdédents sont lents car les d&@as doivent
étre rentéesa la main.

Révision Solutions: lire les doneesa la console, dans un fichier oemgrer
Programmation des donges aatoirement.

Trois sortes de valeugstestertest de cak:

e tests positifs valeurs &gitimes qui servena verifier si les
résultats sont ceux attendus (e.g. pgar. 100, 1,0.01, 102,

)

e tests de bornesvaleurs (Bgitimes) qui se trouverit la limite
des donies acceptables (e @pour \/')

e tests regatifs: valeurs qui doivenétre rejekes par le pro-
gramme (e.g—2 pour\/')

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

1.4. Evaluer les résultats des tests

UMH

Révision

o utiliser des don@es dont on confidles sultats

Programmation

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

1.4. Evaluer les résultats des tests

o vérifier les Esultatsa la main (lent)

Révision

o utiliser des don@es dont on confidles sultats

Programmation

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

1.4. Evaluer les résultats des tests

Ul - ll l e utiliser des don@es dont on coniiides €sultats
o vérifier les Esultatsa la main (lent)
Révision T , L
: ¢ vérifier que les @sultats respectent une pragei connue (e.g.
Programmation si 2 est supposétre la racine caée deu, alorsz? devraitétre

égalaa.)

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

1.4.

UMH
.

Révision

Programmation

Evaluer les resultats des tests

utiliser des don@es dont on coniitdles esultats
vérifier les esultatsa la main (lent)

vérifier que les &sultats respectent une pragei connue (e.g.
si x est supposétre la racine caée deu, alorsz? devraitétre
égalaa.)

utiliser unoracle (manere moins rapide de calculer leeme

résultat mais dont on esfisde la validi€). Exemple: calculer
1 ana

x2 en utlisantMath.Pow .

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

UMH

Révision

Programmation

1.4. Evaluer les résultats des tests

o utiliser des don@es dont on confidles sultats
e vérifier les Esultatsa la main (lent)

e vérifier que les @sultats respectent une prage connue (e.g.
si x est supposétre la racine caée deu, alorsz? devraitétre
égalaa.)

e utiliser unoracle (maniere moins rapide de calculer leéme
résultat mais dont on esfisde la validi€). Exemple: calculer
1 ana
2 en utilisantMath.Pow .

Les deux derrdires solutions ont I'avantageédife automatiques
(inclues dans le test harness).

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Exemple 3 :

/**

Test harness for getRoot using a known property
*f
public static void main(String[] args)

Révision {

int fail = 0;

final int TRIES = 1000;

Random generator = new Random();
for (int i = 1; i <= TRIES; i++)

Programmation

double x = 1.0E6 * generator.nextDouble();
RootApproximator r = new RootApproximator(x);
double y = r.getRoot();

if (INumeric.approxEqual(y*y,x))
fail++;
}

System.out.printin("Fail: " + fail + " on " + TRIES + " tries");

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

1.5. Collecter les tests
UMH e Utiliser des fichiersé&utilisables pour refaire les tests dans le futur.

Notions théoriques
Révision

Programmation

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

1.5. Collecter les tests

UMH e Utiliser des fichiersé&utilisables pour refaire les tests dans le futur.
e Une batterie de testganglais:test suit¢ est une collection de tests
réutilisables.
Révision

Programmation

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

1.5. Collecter les tests

e Utiliser des fichiersé&utilisables pour refaire les tests dans le futur.

e Une batterie de testganglais:test suit¢ est une collection de tests
gy
Révision , . s e a o

e Phenonene decyclage: un bug qui &t fixé peut eappartre dans

Programmation une version future : utile de garder un test pour chaque bug éorrig

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

1.5. Collecter les tests

e Utiliser des fichiersé&utilisables pour refaire les tests dans le futur.

e Une batterie de testganglais:test suit¢ est une collection de tests
réutilisables.
Révision , . s e a o

e Phenonene decyclage: un bug qui &t fixé peut eappartre dans

Programmation une version future : utile de garder un test pour chaque bug éorrig

e tests de &gression garder tous les anciens tests et les tastdraque
nouvelle version du programme pour s'assurer que éésuts an-
ciens ne éapparaissent pas.

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

UMH

Révision

Programmation

1.5. Collecter les tests

Utiliser des fichiersé&utilisables pour refaire les tests dans le futur.

Une batterie de testganglais:test suitg¢ est une collection de tests
réutilisables.

Phenonene decyclage: un bug qui e&té fixé peut eapparire dans
une version future : utile de garder un test pour chaque bug éorrig

tests deegression garder tous les anciens tests et les testdraque
nouvelle version du programme pour s'assurer que éésuts an-
ciens ne éapparaissent pas.

black-box testing méthode de test qui ne tient pas compte de la
structure interne d’un programme. Ellénfie simplement que les
tests positifs soient valides et que les testgatifs soient rejets
correctement.

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

UMH

Révision

Programmation

1.5. Collecter les tests

Utiliser des fichiersé&utilisables pour refaire les tests dans le futur.

Une batterie de testganglais:test suitg¢ est une collection de tests
réutilisables.

Phenonene decyclage: un bug qui e&té fixé peut eapparire dans
une version future : utile de garder un test pour chaque bug éorrig

tests deegression garder tous les anciens tests et les testdraque
nouvelle version du programme pour s'assurer que éésuts an-
ciens ne éapparaissent pas.

black-box testing méthode de test qui ne tient pas compte de la
structure interne d’un programme. Ellénfie simplement que les
tests positifs soient valides et que les testgatifs soient rejets
correctement.

white-box testing tient compte de la structure interne du programme
(e.g. tests uné pour chaque &thode).

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

UMH

Révision

Programmation

1.5. Collecter les tests

Utiliser des fichiersé&utilisables pour refaire les tests dans le futur.

Une batterie de testganglais:test suitg¢ est une collection de tests
réutilisables.

Phenonene decyclage: un bug qui e&té fixé peut eapparire dans
une version future : utile de garder un test pour chaque bug éorrig

tests deegression garder tous les anciens tests et les testdraque
nouvelle version du programme pour s'assurer que éésuts an-
ciens ne gapparaissent pas.

black-box testing méthode de test qui ne tient pas compte de la
structure interne d’un programme. Ellénfie simplement que les
tests positifs soient valides et que les testgatifs soient rejets
correctement.

white-box testing tient compte de la structure interne du programme
(e.g. tests unit pour chaque athode).

test coverage mesure quel pourcentage du code est couvert par le!
tests (ickalement 100%, ce qui implique par exemple que tous les ca
d'unif/else soient couverts).

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

1.6. Tracage de programme

UMH

Révision

Le fait d’ajouter des messages destiraux ébugages dans le code
d’'un programme permet keacage du programme

Programmation

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

UMH

Révision

Programmation

1.6. Tracage de programme

Le fait d’ajouter des messages destiraux ébugages dans le code
d’'un programme permet keacage du programme

Probleme : les classes finales doivent souvétte muettes. Le
tracage des programmes peut meheles affichages intempestifs si
on en les efface pas.

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

UMH

Révision

Programmation

1.6. Tracage de programme
Le fait d’ajouter des messages destiraux ébugages dans le code
d’'un programme permet keacage du programme

Probleme : les classes finales doivent souvétte muettes. Le
tracage des programmes peut meheles affichages intempestifs si
on en les efface pas.

Une solution: utiliser la classé.ogger : voir livre et API

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

UMH

Révision

Programmation

1.6. Tracage de programme

Le fait d’ajouter des messages destiraux ébugages dans le code
d’'un programme permet keacage du programme

Probleme : les classes finales doivent souvétte muettes. Le
tracage des programmes peut meheles affichages intempestifs si
on en les efface pas.

Une solution: utiliser la classé.ogger : voir livre et API

1.7. Utilisation d’un d ebugueur

Un débugueur est un programme qui permé&b@cuter un autre pro-
grammepasa pasen y incorporant des points d’@ts preakpoints.
Il permet d’inspecter les variables en cour&@cution.

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

1.8. Plan de 'HOWTO 4 : D ebugger

UMH

Révision

Etape 1 Reproduire I'erreur

Programmation

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

1.8. Plan de 'HOWTO 4 : D ebugger

Etape 2 Simplifier I'erreur

Révision

Etape 1 Reproduire I'erreur

Programmation

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

1.8. Plan de 'HOWTO 4 : D ebugger

Etape 2 Simplifier I'erreur

Révision

Etape 1 Reproduire I'erreur

Etape 3 Diviser pour gner
Programmation

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

1.8. Plan de 'HOWTO 4 : D ebugger

Etape 2 Simplifier I'erreur

Révision

Etape 1 Reproduire I'erreur

Etape 3 Diviser pour gner
Programmation

Etape 4 Savoir ce que votre programme doit faire

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

UMH

Révision

Programmation

1.8. Plan de 'HOWTO 4 : D ebugger

Etape 1 Reproduire I'erreur

Etape 2 Simplifier I'erreur

Etape 3 Diviser pour gner

Etape 4 Savoir ce que votre programme doit faire

Etape 5 Regarder les étails

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

UMH

Révision

Programmation

1.8. Plan de 'HOWTO 4 : D ebugger

Etape 1 Reproduire I'erreur

Etape 2 Simplifier I'erreur

Etape 3 Diviser pour gner

Etape 4 Savoir ce que votre programme doit faire
Etape 5 Regarder les étails

Etape 6 Soyez &rs de comprendre le bug avant de le corriger

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

UMH

Notions théoriques

Révision

Programmation

2. Exercices de evision

R9.1: Définissez les notions dest unié et detest harness

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

UMH

Notions théoriques

Révision

Programmation

2. Exercices de evision

R9.1: Définissez les notions dest unié et detest harness

R9.2: Qu’est-ce qu'uroracle?

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

UMH

Notions théoriques

Révision

Programmation

2. Exercices de evision

R9.1: Définissez les notions dest unit et detest harness
R9.2: Qu’est-ce qu'uroracle?

R9.3: Définissez les notions dests de egressioret debatterie de
tests

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

UMH

Notions théoriques

Révision

Programmation

2. Exercices de evision

R9.1: Définissez les notions dest unit et detest harness
R9.2: Qu’est-ce qu'uroracle?

R9.3: Définissez les notions dests de egressioret debatterie de
tests

R9.4: Qu’est-ce que leyclage? Comment Eviter ?

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

UMH

Notions théoriques

Révision

Programmation

2. Exercices de evision
R9.1: Définissez les notions dest unit et detest harness
R9.2: Qu’est-ce qu'uroracle?

R9.3: Définissez les notions dests de egressioret debatterie de
tests

R9.4: Qu’est-ce que leyclage? Comment Eviter ?

R9.5: La fonctionarc sinusest l'inverse de la fonctiosinus i.e.,
y = arcsin(z) si z = sin(y). Cette fonction n’est &finie que si
—1 < 2 < 1. Supposez que vous deviearire une rathode Java pour
calculer I'arc sinus. Donnez trois tegtssitifset un testle borneavec
les valeurs de retour suppes, ainsi que deux testggatifs

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

UMH

Notions théoriques

Révision

Programmation

2. Exercices de evision

R9.1: Définissez les notions dest unit et detest harness
R9.2: Qu’est-ce qu'uroracle?

R9.3: Définissez les notions dests de egressioret debatterie de
tests

R9.4: Qu’est-ce que leyclage? Comment Eviter ?

R9.5: La fonctionarc sinusest l'inverse de la fonctiosinus i.e.,
y = arcsin(z) si z = sin(y). Cette fonction n’est &finie que si
—1 < 2 < 1. Supposez que vous deviearire une rathode Java pour
calculer I'arc sinus. Donnez trois tegtssitifset un testle borneavec
les valeurs de retour suppes, ainsi que deux testggatifs

R9.6: Qu’est-ce que I¢racage d’'un programme@

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

UMH

Notions théoriques

Révision

Programmation

R9.7: Vrai ou faux :

e Siun programme passe avec Sgtous les tests d'une batterie
de tests, il ne contient plus de bugs.

e Si ondémontreque toutes les Athodes d’un programme sont
correctes, alors le programme ne contient pas de bugs.

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

3. Exercices de programmation

UMH

Notions théoriques

Rappel: La fonctionarc sinusest I'inverse de la fonction sinus :

y = arcsin(z) Siz = sin(y),

Révision
Programmation ou x est comris entre-1 et 1 ety est expring en radians. Par exem-
ple,
arcsin(0) = 0,
arcsin(1/2) = I1I/6,
arcsin(v/2/2) = TII/4,
arcsin(v/3/2) = TI/3,
arcsin(l) = II/2,

arcsin(—1) = II/2.

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

UMH

Notions théoriques
Révision

Programmation

P9.1: Ecrivez une classArcSinApproximator qui calculera la
fonction arc sinus partir de saérie de Taylor :
3 32'.’E5 32_52.1.7 32.52_72.379
|

. @
arcsin(z) = z + 37 + 7 + = o

Remarques :

e |l existe une nethode Java dans la libraire standard pour calculer
cette fonction mais vous ne devez pas I'utiliser pour cet exercice.

e Calculez la somme des termes jusgjoe qu’'un nouveau terme soit
plus petit quel0—6.

e Ne calculez pas les puissances et les factorielles explicitement : ca
culez plubt chaque terma partir du pecedant.

¢ Cette néthode seraautilisee dans les exercices qui suivent.

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

UMH

Notions théoriques
Révision

Programmation

P9.1: Ecrivez une classArcSinApproximator qui calculera la
fonction arc sinus partir de saérie de Taylor :
3 32'.’E5 32_52.1.7 32'52'72'.’179
|

. @
arcsin(z) = z + 37 + 7 + = o

Remarques :

e |l existe une nethode Java dans la libraire standard pour calculer
cette fonction mais vous ne devez pas I'utiliser pour cet exercice.

e Calculez la somme des termes jusgaé qu’un nouveau terme soit
plus petit quel0—6.

e Ne calculez pas les puissances et les factorielles explicitement : ca
culez plubt chaque terma partir du pecedant.

¢ Cette néthode seraautilisee dans les exercices qui suivent.

P9.2: Ecrivez untest harnespour la class@rcSinApproximator

qui lit des nombreséels et qui calcule leurs arc sinusénfiez en-
suite les valeurs avec une calculatrice scientifique partir des ex-
emples donés ci-dessus.

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

UMH

Notions théoriques
Révision

Programmation

P9.3: Ecrivez untest harnessjui gérereautomatiquemerndes tests

de cas pour la clasgecSinApproximator
valeurs comprises entrel et 1, par pas dé.1.

en prenant toutes les

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

UMH

Notions théoriques
Révision

Programmation

P9.3: Ecrivez untest harnessjui gérereautomatiquemerndes tests
de cas pour la clasgecSinApproximator en prenant toutes les
valeurs comprises entrel et 1, par pas dé.1.

P9.4: Ecrivez untest harnessgjui gererealéatoirementes tests de
cas pour la class&rcSinApproximator en prenant 10 nombres
réels abatoires compris entrel et1.

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

UMH

Notions théoriques
Révision

Programmation

P9.3: Ecrivez untest harnessjui gérereautomatiquemerndes tests
de cas pour la clasgecSinApproximator en prenant toutes les
valeurs comprises entrel et 1, par pas dé.1.

P9.4: Ecrivez untest harnessgjui gererealéatoirementes tests de
cas pour la class&rcSinApproximator en prenant 10 nombres
réels abatoires compris entrel et1.

P9.5: Ecrivez untest harnesgjui teste automatiquement la valilit
de la class@rcSinApproximator en \erifiant que

Math.sin(new ArcSinApproximator(x).getArcSin())

est approximativemermgalax. Testez-le sur 100 nombregatoires
(compris entre-1 et1).

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

UMH

Notions théoriques
Révision

Programmation

P9.6: La fonction arc sinus peldtre calcudea partir de la fonction
arc tangeante

X
arcsin(z) = arctan | — | .
(@) (=)
Utilisez cette expression comme aracle pour tester que votre
méthode arc sinus fonctionne correctement. Testez vobtbadea
partir de 100 nombres &éitoires.

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

UMH

Notions théoriques
Révision

Programmation

P9.6: La fonction arc sinus peldtre calcudea partir de la fonction
arc tangeante

X
arcsin(z) = arctan | — | .
(@) (=)
Utilisez cette expression comme aracle pour tester que votre
méthode arc sinus fonctionne correctement. Testez vobtbadea
partir de 100 nombres &éitoires.

P9.7: Le domaine de la fonction arc sinus est < z < 1. Testez
votre classe en calculaatcsin(1.1). Que se passe-t-il ?

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

UMH

Notions théoriques
Révision

Programmation

P9.6: La fonction arc sinus peldtre calcudea partir de la fonction
arc tangeante

X
arcsin(z) = arctan | — | .
(@) (=)
Utilisez cette expression comme aracle pour tester que votre
méthode arc sinus fonctionne correctement. Testez vobtbadea
partir de 100 nombres &éitoires.

P9.7: Le domaine de la fonction arc sinus est < z < 1. Testez
votre classe en calculaatcsin(1.1). Que se passe-t-il ?

P9.8: Ajoutez des messages dans la boucle deéthode qui cal-
cule I'arc sinus par addition de termes successifs. Affichez I'exposar
du terme courant, la valeur du terme courant, et I'approximatior
courante duésultat. Quelle trace de votre programme obtenez-vou
en calculantresin(0.5) ?

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

UMH

Notions théoriques
Révision

Programmation

P9.9: Télechargez les fichielRootApproximator.java et
Numeric.java sur le site. La classRootApproximator con-
tient deux bugs. &ez une &rie de tests de cas pour metr@ur les
bugs. Essayez ensuite de corriger les bugs en utilisant la techniq
du tracage du programme.

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

	Notions théoriques
	Méthode de Héron
	Tests unité
	Générer des entrées pour les tests
	Evaluer les résultats des tests
	Collecter les tests
	Traçage de programme
	Utilisation d'un débugueur
	Plan de l'HOWTO 4 : Débugger

	Révision
	Programmation

