
Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 1 de 19

Plein écran

Quitter

TP de JAVA – Śerie 9
Tester et d́ebugger

Universit́e de Mons-Hainaut
2004 - 2005

Remarque : Il est en ǵeńeral conseilĺe d’utiliser les termesdéboguer, débogage,
débogueuret bogue. Cependant, dans la pratique et dans la langue orale nous con-
statons que ceux-ci sont peu utilisés. C’est pourquoi nous utiliserons les termes
débugger, débugage, débugueuretbug.

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 2 de 19

Plein écran

Quitter

1. Notions théoriques

1.1. Méthode de H́eron

Six est une estimation de
√

a, alors la moyenne dex et a
x est une

meilleur estimation de
√

a.

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 2 de 19

Plein écran

Quitter

1. Notions théoriques

1.1. Méthode de H́eron

Six est une estimation de
√

a, alors la moyenne dex et a
x est une

meilleur estimation de
√

a.

public class RootApproximator
{

private double a;
private double xold;
private double xnew;

/**
Creates a RootApproximator object
@param aNum is the input value
(Precondition: aNumber >= 0)

*/
public RootApproximator(double aNum)
{

a = aNum;
xold = 1;
xnew = a;

}

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 3 de 19

Plein écran

Quitter

/**
Compute a better guess from the current guess.
@return the next guess

*/
public double nextGuess()
{

xold = xnew;
if(xold != 0)

xnew = (xold + (a / xold)) / 2;
return xnew;

}

/**
Compute the root
@return the computed value for the square root

*/
public double getRoot()
{

while (!Numeric.approxEqual(xnew, xold))
nextGuess();

return xnew;
}

}

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 4 de 19

Plein écran

Quitter

1.2. Tests unit́e

Tester les classes, les méthodes individuellement avant de les
incorporer dans un programme.

• Un test unit́e sertà tester une ḿethode ou un ensemble de méthodes
cooṕeratives.

• Pour un test unit́e, les classes contenant les méthodes̀a tester sont
compiĺees hors du programme principal, avec une simple méthode
(dans une classe de test) appelée test harnessqui va faire appel et
passer des paramètres aux ḿethodes̀a tester.

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 5 de 19

Plein écran

Quitter

Exemple 1 :

import javax.swing.JOptionPane;

public class RootApproximatorTest
{

/**
Test harness for method nextGuess

*/
public static void main(String[] args)
{

String input
= JOptionPane.showInputDialog("Enter a number");

double a = Double.parseDouble(input);
RootApproximator r = new RootApproximator(a);

for (int tries = 1; tries <= 10; tries++)
System.out.println("Guess #"

+ tries + ": " + r.nextGuess());

System.exit(0);
}

}

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 6 de 19

Plein écran

Quitter

Exemple 2 :

/**
Test harness for method getRoot

*/
public static void main(String[] args)
{

boolean done = false;
while (!done)
{

String input = JOptionPane.showInputDialog(
"Enter a number, cancel to quit");

if (input == null)
done = true;

else
{

double a = Double.parseDouble(input);
RootApproximator r = new RootApproximator(a);

System.out.println("Square root of "
+ x + " = " + r.getRoot());

}
}
System.exit(0);

}

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 7 de 19

Plein écran

Quitter

1.3. Générer des entŕees pour les tests

Problème : les tests pŕećedents sont lents car les données doivent
être rentŕeesà la main.

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 7 de 19

Plein écran

Quitter

1.3. Générer des entŕees pour les tests

Problème : les tests pŕećedents sont lents car les données doivent
être rentŕeesà la main.

Solutions : lire les donńeesà la console, dans un fichier ou géńerer
des donńees aĺeatoirement.

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 7 de 19

Plein écran

Quitter

1.3. Générer des entŕees pour les tests

Problème : les tests pŕećedents sont lents car les données doivent
être rentŕeesà la main.

Solutions : lire les donńeesà la console, dans un fichier ou géńerer
des donńees aĺeatoirement.

Trois sortes de valeurs̀a tester (test de cas) :

• tests positifs: valeurs ĺegitimes qui servent̀a vérifier si les
résultats sont ceux attendus (e.g. pour√ : 100, 1

4 , 0.01, 1012,
. . .)

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 7 de 19

Plein écran

Quitter

1.3. Générer des entŕees pour les tests

Problème : les tests pŕećedents sont lents car les données doivent
être rentŕeesà la main.

Solutions : lire les donńeesà la console, dans un fichier ou géńerer
des donńees aĺeatoirement.

Trois sortes de valeurs̀a tester (test de cas) :

• tests positifs: valeurs ĺegitimes qui servent̀a vérifier si les
résultats sont ceux attendus (e.g. pour√ : 100, 1

4 , 0.01, 1012,
. . .)

• tests de bornes: valeurs (ĺegitimes) qui se trouvent̀a la limite
des donńees acceptables (e.g.0 pour√)

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 7 de 19

Plein écran

Quitter

1.3. Générer des entŕees pour les tests

Problème : les tests pŕećedents sont lents car les données doivent
être rentŕeesà la main.

Solutions : lire les donńeesà la console, dans un fichier ou géńerer
des donńees aĺeatoirement.

Trois sortes de valeurs̀a tester (test de cas) :

• tests positifs: valeurs ĺegitimes qui servent̀a vérifier si les
résultats sont ceux attendus (e.g. pour√ : 100, 1

4 , 0.01, 1012,
. . .)

• tests de bornes: valeurs (ĺegitimes) qui se trouvent̀a la limite
des donńees acceptables (e.g.0 pour√)

• tests ńegatifs : valeurs qui doivent̂etre rejet́ees par le pro-
gramme (e.g.−2 pour√)

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 8 de 19

Plein écran

Quitter

1.4. Evaluer les résultats des tests

• utiliser des donńees dont on connaı̂t les ŕesultats

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 8 de 19

Plein écran

Quitter

1.4. Evaluer les résultats des tests

• utiliser des donńees dont on connaı̂t les ŕesultats

• vérifier les ŕesultats̀a la main (lent)

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 8 de 19

Plein écran

Quitter

1.4. Evaluer les résultats des tests

• utiliser des donńees dont on connaı̂t les ŕesultats

• vérifier les ŕesultats̀a la main (lent)

• vérifier que les ŕesultats respectent une propriét́e connue (e.g.
si x est suppośe être la racine carrée dea, alorsx2 devraitêtre
égalàa.)

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 8 de 19

Plein écran

Quitter

1.4. Evaluer les résultats des tests

• utiliser des donńees dont on connaı̂t les ŕesultats

• vérifier les ŕesultats̀a la main (lent)

• vérifier que les ŕesultats respectent une propriét́e connue (e.g.
si x est suppośe être la racine carrée dea, alorsx2 devraitêtre
égalàa.)

• utiliser unoracle (manìere moins rapide de calculer le même
résultat mais dont on est sûr de la validit́e). Exemple: calculer
x

1
2 en utilisantMath.Pow .

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 8 de 19

Plein écran

Quitter

1.4. Evaluer les résultats des tests

• utiliser des donńees dont on connaı̂t les ŕesultats

• vérifier les ŕesultats̀a la main (lent)

• vérifier que les ŕesultats respectent une propriét́e connue (e.g.
si x est suppośe être la racine carrée dea, alorsx2 devraitêtre
égalàa.)

• utiliser unoracle (manìere moins rapide de calculer le même
résultat mais dont on est sûr de la validit́e). Exemple: calculer
x

1
2 en utilisantMath.Pow .

Les deux dernìeres solutions ont l’avantage d’être automatiques
(inclues dans le test harness).

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 9 de 19

Plein écran

Quitter

Exemple 3 :

/**
Test harness for getRoot using a known property

*/
public static void main(String[] args)
{

int fail = 0;
final int TRIES = 1000;
Random generator = new Random();
for (int i = 1; i <= TRIES; i++)
{

double x = 1.0E6 * generator.nextDouble();
RootApproximator r = new RootApproximator(x);
double y = r.getRoot();

if (!Numeric.approxEqual(y*y,x))
fail++;

}
System.out.println("Fail: " + fail + " on " + TRIES + " tries");

}

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 10 de 19

Plein écran

Quitter

1.5. Collecter les tests

• Utiliser des fichiers ŕeutilisables pour refaire les tests dans le futur.

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 10 de 19

Plein écran

Quitter

1.5. Collecter les tests

• Utiliser des fichiers ŕeutilisables pour refaire les tests dans le futur.

• Une batterie de tests(anglais: test suite) est une collection de tests
réutilisables.

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 10 de 19

Plein écran

Quitter

1.5. Collecter les tests

• Utiliser des fichiers ŕeutilisables pour refaire les tests dans le futur.

• Une batterie de tests(anglais: test suite) est une collection de tests
réutilisables.

• Ph́enom̀ene decyclage: un bug qui áet́e fixé peut ŕeapparâıtre dans
une version future : utile de garder un test pour chaque bug corrigé.

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 10 de 19

Plein écran

Quitter

1.5. Collecter les tests

• Utiliser des fichiers ŕeutilisables pour refaire les tests dans le futur.

• Une batterie de tests(anglais: test suite) est une collection de tests
réutilisables.

• Ph́enom̀ene decyclage: un bug qui áet́e fixé peut ŕeapparâıtre dans
une version future : utile de garder un test pour chaque bug corrigé.

• tests de ŕegression: garder tous les anciens tests et les testerà chaque
nouvelle version du programme pour s’assurer que des défauts an-
ciens ne ŕeapparaissent pas.

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 10 de 19

Plein écran

Quitter

1.5. Collecter les tests

• Utiliser des fichiers ŕeutilisables pour refaire les tests dans le futur.

• Une batterie de tests(anglais: test suite) est une collection de tests
réutilisables.

• Ph́enom̀ene decyclage: un bug qui áet́e fixé peut ŕeapparâıtre dans
une version future : utile de garder un test pour chaque bug corrigé.

• tests de ŕegression: garder tous les anciens tests et les testerà chaque
nouvelle version du programme pour s’assurer que des défauts an-
ciens ne ŕeapparaissent pas.

• black-box testing: méthode de test qui ne tient pas compte de la
structure interne d’un programme. Elle vérifie simplement que les
tests positifs soient valides et que les tests négatifs soient rejettés
correctement.

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 10 de 19

Plein écran

Quitter

1.5. Collecter les tests

• Utiliser des fichiers ŕeutilisables pour refaire les tests dans le futur.

• Une batterie de tests(anglais: test suite) est une collection de tests
réutilisables.

• Ph́enom̀ene decyclage: un bug qui áet́e fixé peut ŕeapparâıtre dans
une version future : utile de garder un test pour chaque bug corrigé.

• tests de ŕegression: garder tous les anciens tests et les testerà chaque
nouvelle version du programme pour s’assurer que des défauts an-
ciens ne ŕeapparaissent pas.

• black-box testing: méthode de test qui ne tient pas compte de la
structure interne d’un programme. Elle vérifie simplement que les
tests positifs soient valides et que les tests négatifs soient rejettés
correctement.

• white-box testing: tient compte de la structure interne du programme
(e.g. tests unit́e pour chaque ḿethode).

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 10 de 19

Plein écran

Quitter

1.5. Collecter les tests

• Utiliser des fichiers ŕeutilisables pour refaire les tests dans le futur.

• Une batterie de tests(anglais: test suite) est une collection de tests
réutilisables.

• Ph́enom̀ene decyclage: un bug qui áet́e fixé peut ŕeapparâıtre dans
une version future : utile de garder un test pour chaque bug corrigé.

• tests de ŕegression: garder tous les anciens tests et les testerà chaque
nouvelle version du programme pour s’assurer que des défauts an-
ciens ne ŕeapparaissent pas.

• black-box testing: méthode de test qui ne tient pas compte de la
structure interne d’un programme. Elle vérifie simplement que les
tests positifs soient valides et que les tests négatifs soient rejettés
correctement.

• white-box testing: tient compte de la structure interne du programme
(e.g. tests unit́e pour chaque ḿethode).

• test coverage: mesure quel pourcentage du code est couvert par les
tests (id́ealement 100%, ce qui implique par exemple que tous les cas
d’un if/else soient couverts).

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 11 de 19

Plein écran

Quitter

1.6. Traçage de programme

Le fait d’ajouter des messages destinés aux d́ebugages dans le code
d’un programme permet letraçage du programme.

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 11 de 19

Plein écran

Quitter

1.6. Traçage de programme

Le fait d’ajouter des messages destinés aux d́ebugages dans le code
d’un programme permet letraçage du programme.

Problème : les classes finales doivent souventêtre muettes. Le
traçage des programmes peut menerà des affichages intempestifs si
on en les efface pas.

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 11 de 19

Plein écran

Quitter

1.6. Traçage de programme

Le fait d’ajouter des messages destinés aux d́ebugages dans le code
d’un programme permet letraçage du programme.

Problème : les classes finales doivent souventêtre muettes. Le
traçage des programmes peut menerà des affichages intempestifs si
on en les efface pas.

Une solution: utiliser la classeLogger : voir livre et API

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 11 de 19

Plein écran

Quitter

1.6. Traçage de programme

Le fait d’ajouter des messages destinés aux d́ebugages dans le code
d’un programme permet letraçage du programme.

Problème : les classes finales doivent souventêtre muettes. Le
traçage des programmes peut menerà des affichages intempestifs si
on en les efface pas.

Une solution: utiliser la classeLogger : voir livre et API

1.7. Utilisation d’un d ébugueur

Un débugueur est un programme qui permet d’éxécuter un autre pro-
grammepasà pasen y incorporant des points d’arrêts (breakpoints).
Il permet d’inspecter les variables en cours d’éxécution.

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 12 de 19

Plein écran

Quitter

1.8. Plan de l’HOWTO 4 : D ébugger

Etape 1 Reproduire l’erreur

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 12 de 19

Plein écran

Quitter

1.8. Plan de l’HOWTO 4 : D ébugger

Etape 1 Reproduire l’erreur

Etape 2 Simplifier l’erreur

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 12 de 19

Plein écran

Quitter

1.8. Plan de l’HOWTO 4 : D ébugger

Etape 1 Reproduire l’erreur

Etape 2 Simplifier l’erreur

Etape 3 Diviser pour r̀egner

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 12 de 19

Plein écran

Quitter

1.8. Plan de l’HOWTO 4 : D ébugger

Etape 1 Reproduire l’erreur

Etape 2 Simplifier l’erreur

Etape 3 Diviser pour r̀egner

Etape 4 Savoir ce que votre programme doit faire

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 12 de 19

Plein écran

Quitter

1.8. Plan de l’HOWTO 4 : D ébugger

Etape 1 Reproduire l’erreur

Etape 2 Simplifier l’erreur

Etape 3 Diviser pour r̀egner

Etape 4 Savoir ce que votre programme doit faire

Etape 5 Regarder les d́etails

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 12 de 19

Plein écran

Quitter

1.8. Plan de l’HOWTO 4 : D ébugger

Etape 1 Reproduire l’erreur

Etape 2 Simplifier l’erreur

Etape 3 Diviser pour r̀egner

Etape 4 Savoir ce que votre programme doit faire

Etape 5 Regarder les d́etails

Etape 6 Soyez ŝurs de comprendre le bug avant de le corriger

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 13 de 19

Plein écran

Quitter

2. Exercices de ŕevision

R9.1: Définissez les notions detest unit́eet detest harness.

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 13 de 19

Plein écran

Quitter

2. Exercices de ŕevision

R9.1: Définissez les notions detest unit́eet detest harness.

R9.2: Qu’est-ce qu’unoracle?

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 13 de 19

Plein écran

Quitter

2. Exercices de ŕevision

R9.1: Définissez les notions detest unit́eet detest harness.

R9.2: Qu’est-ce qu’unoracle?

R9.3: Définissez les notions detests de ŕegressionet debatterie de
tests.

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 13 de 19

Plein écran

Quitter

2. Exercices de ŕevision

R9.1: Définissez les notions detest unit́eet detest harness.

R9.2: Qu’est-ce qu’unoracle?

R9.3: Définissez les notions detests de ŕegressionet debatterie de
tests.

R9.4: Qu’est-ce que lecyclage? Comment l’́eviter ?

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 13 de 19

Plein écran

Quitter

2. Exercices de ŕevision

R9.1: Définissez les notions detest unit́eet detest harness.

R9.2: Qu’est-ce qu’unoracle?

R9.3: Définissez les notions detests de ŕegressionet debatterie de
tests.

R9.4: Qu’est-ce que lecyclage? Comment l’́eviter ?

R9.5 : La fonctionarc sinusest l’inverse de la fonctionsinus, i.e.,
y = arcsin(x) si x = sin(y). Cette fonction n’est d́efinie que si
−1 ≤ x ≤ 1. Supposez que vous devezécrire une ḿethode Java pour
calculer l’arc sinus. Donnez trois testspositifset un testde borneavec
les valeurs de retour supposées, ainsi que deux testsnégatifs.

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 13 de 19

Plein écran

Quitter

2. Exercices de ŕevision

R9.1: Définissez les notions detest unit́eet detest harness.

R9.2: Qu’est-ce qu’unoracle?

R9.3: Définissez les notions detests de ŕegressionet debatterie de
tests.

R9.4: Qu’est-ce que lecyclage? Comment l’́eviter ?

R9.5 : La fonctionarc sinusest l’inverse de la fonctionsinus, i.e.,
y = arcsin(x) si x = sin(y). Cette fonction n’est d́efinie que si
−1 ≤ x ≤ 1. Supposez que vous devezécrire une ḿethode Java pour
calculer l’arc sinus. Donnez trois testspositifset un testde borneavec
les valeurs de retour supposées, ainsi que deux testsnégatifs.

R9.6: Qu’est-ce que letracage d’un programme?

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 14 de 19

Plein écran

Quitter

R9.7: Vrai ou faux :

• Si un programme passe avec succès tous les tests d’une batterie
de tests, il ne contient plus de bugs.

• Si ondémontreque toutes les ḿethodes d’un programme sont
correctes, alors le programme ne contient pas de bugs.

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 15 de 19

Plein écran

Quitter

3. Exercices de programmation

Rappel: La fonctionarc sinusest l’inverse de la fonction sinus :

y = arcsin(x) si x = sin(y),

où x est comris entre−1 et 1 et y est expriḿe en radians. Par exem-
ple,

arcsin(0) = 0,
arcsin(1/2) = Π/6,

arcsin(
√

2/2) = Π/4,

arcsin(
√

3/2) = Π/3,
arcsin(1) = Π/2,

arcsin(−1) = Π/2.

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 16 de 19

Plein écran

Quitter

P9.1: Ecrivez une classeArcSinApproximator qui calculera la
fonction arc sinus̀a partir de sa śerie de Taylor :

arcsin(x) = x +
x3

3!
+

32 · x5

5!
+

32 · 52 · x7

7!
+

32 · 52 · 72 · x9

9!
+ · · ·

Remarques :

• Il existe une ḿethode Java dans la libraire standard pour calculer
cette fonction mais vous ne devez pas l’utiliser pour cet exercice.

• Calculez la somme des termes jusqu’à ce qu’un nouveau terme soit
plus petit que10−6.

• Ne calculez pas les puissances et les factorielles explicitement : cal-
culez plut̂ot chaque termèa partir du pŕećedant.

• Cette ḿethode sera réutilisée dans les exercices qui suivent.

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 16 de 19

Plein écran

Quitter

P9.1: Ecrivez une classeArcSinApproximator qui calculera la
fonction arc sinus̀a partir de sa śerie de Taylor :

arcsin(x) = x +
x3

3!
+

32 · x5

5!
+

32 · 52 · x7

7!
+

32 · 52 · 72 · x9

9!
+ · · ·

Remarques :

• Il existe une ḿethode Java dans la libraire standard pour calculer
cette fonction mais vous ne devez pas l’utiliser pour cet exercice.

• Calculez la somme des termes jusqu’à ce qu’un nouveau terme soit
plus petit que10−6.

• Ne calculez pas les puissances et les factorielles explicitement : cal-
culez plut̂ot chaque termèa partir du pŕećedant.

• Cette ḿethode sera réutilisée dans les exercices qui suivent.

P9.2: Ecrivez untest harnesspour la classeArcSinApproximator
qui lit des nombres ŕeels et qui calcule leurs arc sinus. Vérifiez en-
suite les valeurs avec une calculatrice scientifique ouà partir des ex-
emples donńes ci-dessus.

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 17 de 19

Plein écran

Quitter

P9.3: Ecrivez untest harnessqui géǹereautomatiquementdes tests
de cas pour la classeArcSinApproximator en prenant toutes les
valeurs comprises entre−1 et1, par pas de0.1.

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 17 de 19

Plein écran

Quitter

P9.3: Ecrivez untest harnessqui géǹereautomatiquementdes tests
de cas pour la classeArcSinApproximator en prenant toutes les
valeurs comprises entre−1 et1, par pas de0.1.

P9.4: Ecrivez untest harnessqui géǹerealéatoirementdes tests de
cas pour la classeArcSinApproximator en prenant 10 nombres
réels aĺeatoires compris entre−1 et1.

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 17 de 19

Plein écran

Quitter

P9.3: Ecrivez untest harnessqui géǹereautomatiquementdes tests
de cas pour la classeArcSinApproximator en prenant toutes les
valeurs comprises entre−1 et1, par pas de0.1.

P9.4: Ecrivez untest harnessqui géǹerealéatoirementdes tests de
cas pour la classeArcSinApproximator en prenant 10 nombres
réels aĺeatoires compris entre−1 et1.

P9.5: Ecrivez untest harnessqui teste automatiquement la validité
de la classeArcSinApproximator en v́erifiant que

Math.sin(new ArcSinApproximator(x).getArcSin())

est approximativementégalàx . Testez-le sur 100 nombres aléatoires
(compris entre−1 et1).

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 18 de 19

Plein écran

Quitter

P9.6: La fonction arc sinus peutêtre calcuĺeeà partir de la fonction
arc tangeante:

arcsin(x) = arctan
(

x√
1− x2

)
.

Utilisez cette expression comme unoraclepour tester que votre
méthode arc sinus fonctionne correctement. Testez votre méthodeà
partir de 100 nombres aléatoires.

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 18 de 19

Plein écran

Quitter

P9.6: La fonction arc sinus peutêtre calcuĺeeà partir de la fonction
arc tangeante:

arcsin(x) = arctan
(

x√
1− x2

)
.

Utilisez cette expression comme unoraclepour tester que votre
méthode arc sinus fonctionne correctement. Testez votre méthodeà
partir de 100 nombres aléatoires.

P9.7: Le domaine de la fonction arc sinus est−1 ≤ x ≤ 1. Testez
votre classe en calculantarcsin(1.1). Que se passe-t-il ?

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 18 de 19

Plein écran

Quitter

P9.6: La fonction arc sinus peutêtre calcuĺeeà partir de la fonction
arc tangeante:

arcsin(x) = arctan
(

x√
1− x2

)
.

Utilisez cette expression comme unoraclepour tester que votre
méthode arc sinus fonctionne correctement. Testez votre méthodeà
partir de 100 nombres aléatoires.

P9.7: Le domaine de la fonction arc sinus est−1 ≤ x ≤ 1. Testez
votre classe en calculantarcsin(1.1). Que se passe-t-il ?

P9.8: Ajoutez des messages dans la boucle de la méthode qui cal-
cule l’arc sinus par addition de termes successifs. Affichez l’exposant
du terme courant, la valeur du terme courant, et l’approximation
courante du ŕesultat. Quelle trace de votre programme obtenez-vous
en calculantarcsin(0.5) ?

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

Notions théoriques

Révision

Programmation

Page d’accueil

API Java

JJ II

J I

Page 19 de 19

Plein écran

Quitter

P9.9: Téléchargez les fichiersRootApproximator.java et
Numeric.java sur le site. La classeRootApproximator con-
tient deux bugs. Créez une śerie de tests de cas pour mettreà jour les
bugs. Essayez ensuite de corriger les bugs en utilisant la technique
du traçage du programme.

http://www.umh.ac.be/~sysdist
http://java.sun.com/j2se/1.5.0/docs/api/

	Notions théoriques
	Méthode de Héron
	Tests unité
	Générer des entrées pour les tests
	Evaluer les résultats des tests
	Collecter les tests
	Traçage de programme
	Utilisation d'un débugueur
	Plan de l'HOWTO 4 : Débugger

	Révision
	Programmation

